Starship and Space Science

By Sarah Scoles, for SCIENCE

“NASA’s Lunar Crater Observation and Sensing Satellite mission was brutish and short. It began on 9 October 2009, when the hull of a spent Centaur rocket stage smashed into Cabeus crater, near the south pole of the Moon, with the force of about 2 tons of TNT. And it ended minutes later, when a trailing spacecraft flew through and analyzed the lofted plume of debris before it, too, crashed. About 6% of the plume was water, presumably from ice trapped in the shadowed depths of the crater, where the temperature never rises above –173°C. The Moon, it turned out, wasn’t as bone dry as the Apollo astronauts believed. “That was our first ground truth that there is water ice,” says Jennifer Heldmann, a planetary scientist at NASA’s Ames Research Center who worked on the mission.

“Today, Heldmann wants to send another rocket to probe lunar ice—but not on a one-way trip. She has her eye on Starship, a behemoth under development by private rocket company SpaceX that would be the largest flying object the world has ever seen. With Starship, Heldmann could send 100 tons to the Moon, more than twice the lunar payload of the Saturn V, the workhorse of the Apollo missions. She dreams of delivering robotic excavators and drills and retrieving ice in freezers onboard Starship, which could return to Earth with tens of tons of cargo. By analyzing characteristics such as the ice’s isotopic composition and its depth, she could learn about its origin: how much of it came from a bombardment of comets and asteroids billions of years ago versus slow, steady implantation by the solar wind. She could also find out where the ice is abundant and pure enough to support human outposts. “It’s high-priority science, and it’s also critical for exploration,” Heldmann says.

“The stainless steel Starship rocket, standing upright, photographed from near the top so that its height is accentuated by the perspective.
SpaceX expects to launch the 120-meter-tall Starship on its first orbital test flight in the coming months.

“When SpaceX CEO Elon Musk talks up Starship, it’s mostly about human exploration: Set up bases on Mars and make humans a multiplanetary species! Save civilization from extinction! But Heldmann and many others believe the heavy lifter could also radically change the way space scientists work. They could fly bigger and heavier instruments more often—and much more cheaply, if SpaceX’s projections of cargo launch costs as low as $10 per kilogram are to be believed. On Mars, they could deploy rovers not as one-offs, but in herds. Space telescopes could grow, and fleets of satellites in low-Earth orbit could become commonplace. Astronomy, planetary science, and Earth observation could all boldly go, better than they ever have before.

“Of course, Starship isn’t real yet. All eyes will be on a first orbital launch test, expected sometime in the coming months. Even if it is a success, no one knows whether SpaceX will be able to achieve its vision of launching the rockets daily and reusing them many times. Also unsettled is whether a market will materialize for a rocket that could put so much into orbit. But scientists need to prepare, Heldmann says. “We on the science side need to be ready to take advantage of those capabilities when they come online.”

“So do NASA centers such as the Jet Propulsion Laboratory, which designs and builds many space science missions, says Casey Handmer, a former JPL software engineer. In a series of provocative blog posts with titles like “Starship is still not understood,” he has argued that Starship will upset the traditional way of doing space science—spending billions of dollars to make one-of-a-kind instruments that work perfectly. If the NASA centers don’t find ways to take risks and make more stuff more cheaply, he says, they will find themselves displaced by companies willing to do so. “The writing is on the wall,” Handmer says. “And all the NASA centers should be thinking really carefully.”

“ON A BALMY NIGHT in February, Musk strode onto a stage in Boca Chica, Texas, home of SpaceX’s Starbase launch site, for a public update on the status of Starship. Towering behind him, bathed in lights, was the latest prototype, about 120 meters tall: the Starship vehicle, which carries people or payloads, resting on top of a Super Heavy booster. The prototype wasn’t flight ready, nor had the Federal Aviation Administration (FAA) given SpaceX permission to launch it from Starbase—but it was still a spectacular backdrop, packed with coiled purpose. After welcoming the crowd of faithful rocket geeks, Musk launched into an impromptu lecture on the philosophy propelling him and his company beyond Earth. “Why build a giant, reusable rocket? Why make life multiplanetary? I think this is an incredibly important thing for the future of life itself.”

“SpaceX’s workhorse rocket, the 70-metertall Falcon 9, has already shaken up the aerospace business. With that rocket, SpaceX pioneered reusability, employing retrorockets and steerable fins to guide the first stage to a landing after it reenters the atmosphere. Today, SpaceX routinely slaps on a fresh coat of paint and launches it again; in June, the company flew one of these “flight tested” stages a record 13th time. Another record is on the horizon: The company is on track to launch more than 50 Falcon 9 and Falcon Heavy rockets this year, or about one per week on average. The dependable reuse and rapid launch cadence are two of the reasons why SpaceX can charge $67 million for a Falcon 9 launch, much less than its competitors. But Musk wasn’t satisfied.

“In 2016, at an International Astronautical Congress in Mexico, Musk sketched out plans for a rocket to colonize Mars, one he would soon be calling BFR (Big Falcon Rocket, in family-friendly terms, but you get the joke). The concept evolved into Starship, but the focus remained on affordability and reusability—making launches as dull and routine as FedEx cargo flights. The body of the rocket is stainless steel, heavier than the aluminum alloys of most rockets, but cheaper and more easily manufactured. The 33 Raptor engines crammed into the backend of Super Heavy burn methane rather than the traditional kerosene-based rocket fuels, not only because it is cheaper, but also because it could be harvested on Mars by combining carbon dioxide and water. The booster is designed to return to the launchpad after its 6-minute ride; the company believes it can be refueled and ready to relaunch in an hour. Starship is also reusable. The goal is to be able to launch each vehicle three times a day.

“Once in orbit, a loaded Starship could be gassed up by a “tanker” version of the vehicle—enabling it to take its 100 tons of payload on to the Moon or Mars. At the February event, Musk explained how a single Starship, launching three times per week, would loft more than 15,000 tons to orbit in a year—about as much as all the cargo that has been lifted in the entire history of spaceflight. Musk has claimed the price of each launch might eventually be as low as $1 million, or $10 per kilogram to low-Earth orbit. The only rocket close to Starship in its capabilities is NASA’s Space Launch System, set to fly for the first time this month. Earlier this year, the agency’s auditor found each launch would cost about $4 billion, or nearly $60,000 per kilogram.

“Pierre Lionnet, a space economist at Eurospace, an industry trade group, is skeptical SpaceX can achieve such a low price point. It may not correctly account for the costs of developing and building the rocket, for example. “When I look at Starship, I’m looking at what seems to be a very expensive device.” To achieve profitability with such high capital costs, SpaceX will have to attain its ambitious launch rates, which means it will need paying customers to soak up all that cargo capacity. SpaceX hopes to develop new markets in space mining, tourism, or other activities not yet dreamed of, but Lionnet is not so sure the heavy lifter will whet that appetite all by itself. “If you’re vegetarian, and I’m offering you a burger, I can offer it at the cheapest possible price, and you don’t eat it.”

“The debate will soon graduate beyond the theoretical. In May 2021, after several spectacularly explosive failures, a Starship upper stage flew 10 kilometers up into the atmosphere. After landing, it briefly caught fire, but the company deemed the suborbital flight a success. Since then, SpaceX has built out Starbase, constructing a launch tower that can catch returning boosters with two robotic arms the company calls “chopsticks.” It has refined its rocket assembly line, which can now build four Raptor engines per week. And in June, FAA gave SpaceX approval to launch from Starbase, provided it takes steps to minimize the impact on the environment.

“At the February event, Musk said he was confident Starship would make its first orbital attempt this year. For Musk, the sci-fi dreams are tantalizingly within reach. “Let’s make this real!” he exhorted the crowd, pumping his fists.

“SCIENCE HAS MOSTLY been an afterthought for Musk. But Heldmann has been surprised that, for many planetary scientists, Starship has also been an afterthought.

“In 2020, she and a team of researchers and industry insiders submitted a white paper touting the benefits of Starship to the “decadal survey” in planetary science, an influential community exercise that helps NASA and Congress set long-term priorities. “It’s a good time to try and get this idea in the consciousness of others,” she says. Heldmann and her colleagues suggested NASA create a dedicated funding line for missions relying on Starship…” continued here at SCIENCE

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s